Removable singularities and Liouville-type property of analytic multivalued functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removable singularities for analytic functions in BMO and locally Lipschitz spaces

In this paper we study removable singularities for holomorphic functions such that supz∈Ω |f (z)|dist(z, ∂Ω) < ∞. Spaces of this type include spaces of holomorphic functions in Campanato classes, BMO and locally Lipschitz classes. Dolzhenko (1963), Král (1976) and Nguyen (1979) characterized removable singularities for some of these spaces. However, they used a different removability concept th...

متن کامل

Removable Singularities for Analytic Varieties in Strongly Pseudoconvex Domains

Let M be a closed maximally complex submanifold of some relatively compact open subset A of the boundary of a strictly pseudoconvex domain Ω of C. We find an open domain à of Ω, depending only on Ω and A, and a complex variety with isolated singularities W ⊂ à such that bW ∩ A = M .

متن کامل

On Removable Singularities for Cr Functions in Higher Codimension

In recent years, several papers (for a complete reference list, see Chirka and Stout [3]) have been published on the subject of removable singularities for the boundary values of holomorphic functions on some domains or hypersurfaces in the complex euclidean space. In this paper, we study the higher codimensional case. Our results for the hypersurface case are weaker than those in [3] and [4], ...

متن کامل

Removable Singularities In

Let A be a C*-algebra with identity and suppose A has real rank 0. Suppose a complex-valued function is holomorphic and bounded on the intersection of the open unit ball of A and the identity component of the set of invertible elements of A. We show that then the function has a holomorphic extension to the entire open unit ball of A. Further, we show that this does not hold when A = C(S), where...

متن کامل

Generalized GL, Caputo, and Riemann-Liouville derivatives for analytic functions

The formulations of Riemann-Liouville and Caputo derivatives in the complex plane are presented. Two versions corresponding to the whole or half plane. It is shown that they can be obtained from the Grünwald-Letnikov derivative.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de la faculté des sciences de Toulouse Mathématiques

سال: 1992

ISSN: 0240-2963

DOI: 10.5802/afst.748